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We determine analytically the phase diagram of the toric code model in a parallel magnetic field which
displays three distinct regions. Our study relies on two high-order perturbative expansions in the strong- and
weak-field limits, as well as a large-spin analysis. Calculations in the topological phase establish a quasiparticle
picture for the anyonic excitations. We obtain two second-order transition lines that merge with a first-order
line, giving rise to a multicritical point as recently suggested by numerical simulations. We compute the values
of the corresponding critical fields and exponents that drive the closure of the gap. We also give the one-
particle dispersions of the anyonic quasiparticles inside the topological phase.
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I. INTRODUCTION

For more than 30 years, lattice gauge theories have been
the subject of intense research especially in high-energy
physics where they aim at describing quark confinement.1

Such theories are deeply related to topological phase transi-
tions characterized by the absence of local order
parameters.2,3 One of the most famous models where such
transitions occur is the Z2 gauge and matter theory whose
phase diagram in the three-dimensional case �2+1� has been
widely studied by means of various methods.4–9 Interestingly
and very recently, this model has been shown to be equiva-
lent to the toric code model �TCM� in a magnetic field in
which one introduces ancillary �matter� fields together with a
gauge-invariance constraint.10

The TCM was introduced by Kitaev11 to perform topo-
logical quantum computation. This spin model can be solved
exactly and exhibits two kinds of dispersionless excitations,
called charges and fluxes, which have mutual anyonic statis-
tics although each of them are bosons. In the absence of an
external magnetic field, these anyons are localized on the
vertices �charges� and on the plaquettes �fluxes� of a square
lattice. Let us emphasize that the detection of anyonic statis-
tics in the TCM has been the subject of several experimental
proposals in optical lattices,12,13 although there the TCM ap-
pears as a low-energy effective theory of Kitaev’s honey-
comb model.14,15

The aim of this paper is to study the influence of a mag-
netic field in the TCM. Contrary to a recent study,10 we di-
rectly consider the quantum problem instead of using its
classical counterpart. As we will see, the magnetic field gives
rise to a nontrivial phase diagram which displays first-order
and second-order transition lines merging in a topological
quantum multicritical point located at the confluent of topo-
logical and ordered phases. Additionally, we provide a qua-
siparticle �QP� description of the anyonic excitations in the
topological phase.

To investigate this issue, we use several perturbative treat-
ments. First, we perform a standard �linear� spin-wave
analysis,16 which captures quantum fluctuations around the

classical ground state and is thus certainly valid �qualita-
tively� in the large-field limit. Second, we compute the per-
turbative expansion of the ground-state energy and the gap in
the small-field limit and in the large-field limit by means of
the continuous unitary transformations method.17–20 These
three approaches allow us to propose a consistent picture of
the phase diagram. Finally, we also give the dispersion rela-
tion in the 1-QP sector in the topological phase.

II. MODEL

We consider the following Hamiltonian:

H = − Js�
s

As − Jp�
p

Bp − hx�
i

�i
x − hz�

i

�i
z, �1�

where the �i
�’s are the Pauli matrices, As=�i�s�i

x, and
Bp=�i�p�i

z. Subscripts s and p refer, respectively, to sites
and plaquettes of a square lattice, whereas i runs over all
bonds where spin degrees of freedom are located �see Fig. 1�.

Up to a global normalization, the parameter space of
Hamiltonian �1� is three dimensional. Here, we focus on the

FIG. 1. �Color online� A piece of the square lattice on which the
TCM is defined. Spins �dots� are located on the bond and interact if
they share either a vertex �s� or a plaquette �p�.
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two-dimensional subspace defined by Js=Jp=J, which for
hx=hz=0 coincides with the TCM.11 We emphasize that this
subspace is not the same as the one considered in Ref. 10,
where the variables �Js ,Jp ,hx ,hz� are linked via the mapping
onto the isotropic Z2 gauge Higgs model. Consequently, one
cannot compare our results with the numerical data,10 but as
we shall see, our phase diagram displays similar qualitative
features. Let us mention that the single-component magnetic
field case has also been addressed recently,21,22 but its low-
energy properties are exactly the same as those of the cel-
ebrated two-dimensional Ising model in a transverse field
whose phase diagram has been determined accurately many
years ago.23

III. LINEAR SPIN-WAVE THEORY

As a first approach, let us compute the low-energy spec-
trum of H in the semiclassical �large-spin� limit. Therefore,
we consider the Hamiltonian HS obtained by replacing the
Pauli matrices by SU�2� spin-S operators ��i

�→Si
� /S�, which

are considered as classical vectors in the large-S limit
�Si=S�sin �i cos �i , sin �i sin �i , cos �i��. Assuming that
the ground state is given by a uniform configuration
��i=� ,�i=0, ∀ i�,24 we are led to minimize the correspond-
ing classical energy E. Next, we use the Holstein-Primakoff
representation of the spin operators to compute the leading
1 /S corrections and we obtain the excitation energies
�k= 1

S
��k

2−�k
2, where

�k = �k + 2J�sin4 �0 + cos4 �0� + hx sin �0 + hz cos �0 �2�

and

�k = − J cos2 �0 sin2 �0�2 cos�k · n1� + 2 cos�k · n2�

+ cos�k · �n1 + n2�� + cos�k · �n1 − n2��	 . �3�

Here, n1 and n2 are unit vectors displayed in Fig. 1 and �0 is
the angle which minimizes E.

Within this approach we find that the low-energy spec-
trum is gapped for all values of the field except for
hx=hz=�2J=hc

sw where it vanishes. Further, we find that be-
low this value, on the isotropic line hx=hz, the classical
energy has two degenerate minima with the same char-
acteristics. This leads us to conclude that the segment
0�hx=hz�hc

sw is a first-order transition line which ends at
the second-order critical point hc

sw. Note that the value of hc
sw,

being independent of S, certainly differs from the actual
value for S=1 /2.

Although one can reasonably believe in the qualitative
features of the spin-wave scenario in the large-field limit, it
certainly fails for small fields. Indeed, in this limit, the
ground state is far from being a separable state for S=1 /2 as
can be inferred from the zero-field case. In addition, for
S	1 /2, HS does not commute with A’s and B’s in zero field,
which is a key ingredient of the TCM’s topological character.

IV. LARGE-FIELD LIMIT (hx ,hzšJ)

To determine the value hc of the critical field for S=1 /2,
let us investigate the low-energy spectrum of Hamiltonian

�1� in the strong-field limit and on the isotropic line
hx=hz=h. For J=0, the ground state of H is fully polarized in
the field direction, and elementary excitations are static
single spin flips with energy cost 23/2h. For J	0 and setting
h=2−3/2, Hamiltonian �1� can be recast into

H = − N + Q + �
n=0,
1,
2,
3,
4

Tn, �4�

where the operators Tn are proportional to J and change the
number of excitations Q by n, i.e., �Q ,Tn�=nTn. Their ex-
pressions are easily obtained but are too lengthy to be given
here. To study this Hamiltonian, we used the perturbative
continuous unitary transformation �PCUT� method,18–20

which allows one to construct, order by order �in J�, an ef-
fective Hamiltonian which is unitarily equivalent to H but
conserves the number of QPs. The ground state of the effec-
tive Hamiltonian is the 0-QP state, whereas the lowest ex-
cited states lie in the 1-QP sector. We thus have access to the
ground-state energy per spin e0, to the dispersion of the QP,
and consequently to the gap �. At order 5 in J, one has

e0 = −
1

2
−

J

4
−

79

192
J2 +

251

1152
J3 −

4 859 243

15 482 880
J4

+
1 503 945 223

3 251 404 800
J5, �5�

� = 1 − J −
11

48
J2 +

71

256
J3 −

1 101 497

552 960
J4

+
13 604 934 167

1 300 561 920
J5. �6�

A standard Dlog Padé approximants analysis for the gap
leads to hc=0.48�2�J, which, as anticipated, strongly differs
from the spin-wave value �hc

sw=�2J� but confirms the exis-
tence of a critical point on the isotropic line and undoubtedly
provides a more accurate determination of its location. More-
over, in the vicinity of this point and on this line, a �2,2�-
Dlog Padé approximant yields �
�h−hc�� with ��0.73 in-
stead of �=1 /2 in the linear spin-wave approach. This result
is hardly compatible with an Ising-type critical point sug-
gested in the Z2 gauge Higgs model8 for which
�=0.6301�8�,25 but this is clearly due to the relatively low
order of our expansion.

V. SMALL-FIELD LIMIT (hx ,hz™J)

This region is, by far, the most interesting and challenging
one. As explained above, for hx=hz=0, Hamiltonian �1� is
exactly the TCM, and one thus expects the system to be in a
topological phase, whose breakdown should occur at finite
fields only. The ground state of the TCM has all As=Bp=1.
Elementary excitations are such that one charge or one flux is
present, namely, one As=−1 or one Bp=−1, and have an
energy cost of 2J. Note that here, we are assuming open
boundary conditions and the thermodynamic limit, which al-
lows one to consider a single �flux or charge� excitation. On
a torus, such configurations are prohibited and one must ana-
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lyze states with pairs of fluxes or of charges.
In the TCM, fluxes and charges are static, but for finite

fields, these excitations acquire some dynamics and can be
considered as true QP. Of course, setting up such a descrip-
tion in this �liquid� topological phase is a highly nontrivial
task. In the present case, this is made possible thanks to the
strict locality of the anyonic excitations for hx=hz=0. There-
after, we establish perturbatively this QP picture and we
present results for the one-flux and one-charge dispersions in
the topological phase. The study of the one-particle gaps will
allow us to determine the boundaries of this phase and to
compute the corresponding critical exponents.

For nonvanishing fields and setting J=1 /2, the Hamil-
tonian can be written as

H = − N + Q + T0 + T+2 + T−2, �7�

where now Q counts the total number of charges and fluxes.
The Tn operators are linear in hx and hz and satisfy as previ-
ously �Q ,Tn�=nTn. Their precise expressions do not bring
any special physical insight and are thus omitted here.

Once again, such a form is well suited to a PCUT treat-
ment. We emphasize that our study amounts to computing
transition amplitudes of the effective QP-conserving Hamil-
tonian between the highly entangled eigenstates of the
TCM.11 To this end, it is essential to keep track of the anyon
positions and of the underlying spin background simulta-
neously. This makes our perturbation theory more compli-
cated than the one derived in Ref. 7 whose unperturbed
Hamiltonian corresponds �in the gauge-theoretical reformu-
lation used in Ref. 10� to Jp=hz=0, which has separable
eigenstates.

We have obtained the ground-state energy per spin e0, as
well as the dispersions of the QP �dressed charges and
fluxes�, which are obviously mapped one onto the other
when exchanging hx and hz. A typical dispersion is displayed
in Fig. 2. The gap � is the minimum of both dispersions, and
we give it here in the region hx�hz where charges are the
lowest-energy excitations. Both e0 and � were computed at
order 8 in �hx ,hz�, and we obtained

e0 = −
1

2
−

1

2
�hz

2 + hx
2� −

15

8
�hz

4 + hx
4� +

hx
2hz

2

4
−

147

8
�hz

6 + hx
6�

+
113

32
�hx

2hz
4 + hx

4hz
2� +

6685

128
�hx

2hz
6 + hx

6hz
2� +

20 869

384
hx

4hz
4,

�8�

� = 1 − 4hz − 4hz
2 − 12hz

3 + 2hx
2hz − 36hz

4 + 3hx
2hz

2 + 5hx
4

− 176hz
5 +

83

4
hx

2hz
3 +

27

2
hx

4hz −
2625

4
hz

6 + 63hx
2hz

4 + 71hx
4hz

2

+ 92hx
6 −

14 771

4
hz

7 +
28 633

64
hx

2hz
5 +

925

4
hx

4hz
3 +

495

2
hx

6hz

−
940 739

64
hz

8 +
118 029

64
hx

2hz
6 +

19 263

16
hx

4hz
4 +

80 999

96
hx

6hz
2

+
495

2
hx

6hz
2 +

35 649

16
hx

8. �9�

When one of the magnetic field components vanishes, the
TCM is equivalent to the Ising model in a transverse field
so that by setting hx=0, we recover the results obtained
by He et al.23 Equation �9� predicts a gap which vanishes
continuously along a line starting from the critical point
�hx=0,hz=0.1642�2�� and ending at the multicritical point
�hx=hz=0.1703�2��. As previously, error bars are obtained
from various Dlog Padé approximants used to analyze the
series. We also computed the critical exponent driving the
closure of the gap. We found �hx=0�0.65, close to the ex-
pected Ising exponent, and �hx=hz

�0.70 at the multicritical
point �note that at order 8, these exponents are not yet fully
converged�. For intermediate values, the exponent sticks to
the Ising value except in the vicinity of the multicritical
point, indicating that phase transitions are Ising like, except
at the multicritical point. This is confirmed by our QP pic-
ture. Away from this point, only one kind of particle con-
denses �charge or flux�, the other one remaining gapped. At
the multicritical point, both types of particles condense si-
multaneously, and their mutual semionic statistics should be-

FIG. 2. �Color online� One-flux �up� and one-charge �down�
dispersions for hz=0.1, hx=0.05, and J=1 /2 in the reciprocal lat-
tice. In this case �hx�hz�, the gap is given by the minimum of the
one-charge dispersion ���0.54 as can be checked from Eq. �9��.
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come important and gives the transition an unconventional
character.

VI. DISCUSSION

The phase diagram obtained from our analytical calcula-
tions is shown in Fig. 3. Second-order transition lines are
obtained from the small-field expansion, the first-order line
from the classical �large-S� analysis, and the position of the
critical point from the large-field expansion. As in Ref. 10,
phase I is a topological phase where �As�1 and �Bp�1 in
the ground state for hx ,hzJ. This phase has dispersive
charge and flux excitations. Phase II �III� is such that
��i

x�1 if hx�hz�J ���i
z�1 if hz�hx�J�, and these

phases have dispersive spin-flip excitations. However, using

Eq. �5� and the Hellmann-Feynman theorem for the ground-
state energy one can compute ��i

x and ��i
z in phase I, and

check that they do not vanish.
Actually, no local order parameter can be used to charac-

terize these various phases showing that the previous de-
scription is very rough. Furthermore, simple nonlocal order
parameters can only be found on the Ising lines �e.g., if
hx=0, a semi-infinite string of �z operators on a line of the
square lattice of Fig. 1�. Finding order parameters for these
phases thus remains challenging.

Apart from the phase diagram, the central result of our
work is the setup of a QP picture for fluxes and charges in
the topological phase. As a consequence, we have been able
to compute the phase boundaries and the critical exponents
by studying the locus of points where the 1-QP gap vanishes.
This QP description offers a wide range of perspectives. In-
deed, the present PCUT approach is particularly well adapted
to study the many-QP physics.26 This will allow us to inves-
tigate the likely existence of bound states in this model made
up of flux-charge composites �fermionic statistics� that may
change the critical properties. Such fermions are expected to
play a major role when switching on a magnetic field in the
y direction since at lowest order, such a field induces a hop-
ping of these fermions �as well as a local transmutation of
two charges into two fluxes and vice versa�. Note that it may
be difficult to study this problem using Monte Carlo simula-
tions because of the usual sign problem, which arises in the
presence of a transverse field.
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FIG. 3. �Color online� Phase diagram in the plane �hx ,hz� for
J=1 /2. Second-order transition lines are full �red�, the first-order
transition line is dashed �blue�, the multicritical point is a full circle,
and the critical point is represented as an empty circle. Phases I, II,
and III are discussed in the text.
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